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¢ 7 MOTICN CF THIN BODIES AT HTGW SUPEZRSONIC VELOCIT?ESl).

L Following is a trunslation of an eriicle by
G. M. Bam=Zelikoviech, 4. T Bunimovich and
M. P NzkhﬂjlcVQ in kqa News ¢l the écgéw
emy of Selences USSR, Division ﬁf Technigal
Seiencss, Moscow No. 1, 1960, pages 33~40
© ¥Tzvestiya skademii Nauk SSR

Reeently, zlong with the theoretical investigations of the
ambient ges flow past Lodies et bigh velocities, highepower expeér-
iventation facilities have been built which mske 14 possible to
gtudy the preblem of gas flow at spesds an!To»" ny the velocity of
sound and cons:uerably exceeding it, ‘

The progress of the experiment hus sttructed the sttention of
the ressarchers to the problem of the esteblishzent of similirity cri-
teris in the aubient gus flovw at hiph veloeities pust bodies whieh do
net possess the property of geometriesl simllerity.

sbiend zes flow pust thin bodies is investignted in Rnrma"s
work L T 7 (velceities uppromching the velocity of scund) and Tsien's
L 2_/ {bigh supersoniec veloeities), the low being mesumed to be
rlune or axially symmetrical, petential, snd isentropic, The consid-
erations of these =authors are not rigorous bec*use of the assumptions
concerning potentia 11ty and isentropy ci
the flow which ¢lesrly 4o not corvespond 9?
to the physical properties of the flow, 4

Tu the present article, Teien's
results sre generalized for the casgs of
s three-dinensionzl motion in the pres-
ence of shock waves and vortexes, and it
is shown thsat the problem on the steady

Figure 1,

1) The work wus published for small circulation in the syuposium
*Theoretical Hydromechsuics®, No. L, 1%4%. In a footuote to the _ g -
work, it is pointed out that an authorized report of the papers [ 7'/
ves presented in Mareh 1948 at the seminar on hydromechanics at

Mosecow State University. The work is being reprinted ithout changes,
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"ambient gas flow pest a thin body at e high supersonic velocity ean
‘be redueced approximetely to the problem on unsteady ges motion in

spece with the pumber of dimensions heing lesv by unity. Comparison

of the resulis obtained and the availlable exact solutions determine

the limits of the applicability of the aprroximetion method.

- 1o Let us consider the motion of & thin body in the dirsetion
of the negstive axis ¥ at & constant velocity V which cans*dcrphlv
exceads the speed of sound (Figure 1).

Eguations of ithe sbsolute motion of gss in projections ¢on the
+ fixed sxes cof coordinates x', y*, 2' have the following forn.
.Eulerts equaticns

b 6})
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Here, p i pressure, £ = density, u, v, w -~ velocliy compo-
nents of gas along axes x%, ¥y, z*.
. Let ue go over to the system of soordinates Xe ¥y 2 connectﬁd
riglidly with the moving body, after having mede use of the transform-
ation. -

g=z2-Vi, =y =2 o (4.4

Since the motion of gas relstive to the body is stesdy, then

for eny function F(x, y. z) the following reletion is valid

AF (2. 9.8 gy, SF (2 4+ V1. ¥'.8) 1.5

Let b be the chord of the body and § ~ some linear dimension
charecterizing the eross section (dismeter of the orose section jp the
caze ol an axially symmetrical body; the median in the case of a plene
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contour). Introducing dimensionless coordinstes £, w, { according *
to formulas ‘

g=b, y=& =¥ | {8y

3

and making use of the relation (1.5), we will obtain from the equations
(1.1) = (1.3) ' :

Pig i reg -1
R e T

If the form of the body is defined by the eguetion
g/b, y/8, 2/8 =gE =0 o (1.8)

then the embient flow condition on the surface of‘ the body may be write

ten in the form
(V+u)§ﬁ5+u3-§+wé_§:0 . (1.9)

Flui¢ ie at rest at the infinity ahead of the body
' =0, v=0 w=0 : (1.10)

' pressure equals p, end density equale g
When considering the motion of thin bodies et high velocities,

we shell be neglecting terms of the form (3/b)u(ou/dk),...,(8/b)dp/dt

(which contain the small multiplier (3/4) when comparison
with the rest of the terms which are part of the eguations (1.1)
{1.2), (1.3)s &% the same time, terms containing multiplier V&/b, are
retained since st high velocities V of the body, the megnitude of

-
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| V(&/biis finite.
Relating all velaeitzes to the speed of sound in e fluid at

rest, ag, for which

Pe

|

| . : o,

| ‘ ; dp" == (1.33)
|

} (i is the ratio of thernsl &apecities). denoting the dimensiconless ‘
magnitudes of velocity, density, and pressure by :

" P /4 - & . P L] ' p
. ut B VU == e T = 4 P,
R . . ‘Q »‘6' aﬁ’ p pﬂ‘ P P& (1012)
|- - and introducing the dimensionless paremetef ,
¢ we will obtain from equations (1.7)

gu’ '.au": »8u”
e TV W =
8 .av . " 42
K 05 +v &=

KT+vM+uw' = (114)

Ka# +¢ (p ) 4 6(;‘35') -0 S - g

p aﬂ? ® P'
Kﬁ‘i'*“"“”"” BtV E"

Figure 2

_ The. ambient flow condition (1,§) will be rewritten in the fole
“lowing form after neglecting the megnifude of.w upon comparison with 'V

A | W. oés wa?;@_ (i’.gs)

Conditions at the infinity shead of the body will take om the
form , :
=0, =0 =0 (4.16)

2. During the motion of & body at high supersonie #eloéity in
@ gas at rest, & shock wave originstes which deflecte little from the

i
*
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surface of the body. If the normal component of the velocity of the *
shock wave propagation is denoted by ¢ snd the angle between the P
direction of the tangent (Figure 2) to the shock wave and axis x is
Gecignated hy =z, then in view of the smallnses of angle B we will

obtzin
c=Veinf=Vp , _ - {2.9)

If v, end v, sare the components of the velocity of gss

t

' along the tangert snd the norme)l to the direction of the shoek wave,

then v,:ucosp-.ng',igp’% or because p:jis small,

V=8

and ¥' may bLe regarded as the component of tne velocity of gas iﬁ the

direction perperndicular to axis x,
Conditions on the shock wave muy be represented in the form

o - ‘-231___‘03 __;_&‘--il“(f ; o
wmo o mendRSE-EE
-2 a*} e RN/
on = x+1°[ Bt DR Thl N e YO T =

where py and p 4 are density and pressure beyond the shock wave.
v Going tc coordinates £, m §, we will obtain from condition

¢ :-‘-“V!-Qi ‘ (2+3}

where is maﬁnitude determined in the process of the qolat:cn of the
~problem {the tangent of the angle betwsen the direction of the tangent

to the shock wave end exis €& in the plane & ).
Introdueing parameter K inte equations (2,2) and denoting

vr‘»fi. v’::v.ﬂ P s ' “..;P.:-' 2.4 |
“o’ » as ' Py T pt P " s s ;

we will obtain conditions on the shock wave in dimensionless fora

= - *. 2 K — 1 y\ . o »
_ 0. P u+1K“ [i“ * WJ‘ - {2.5)
e 2 RE . (e 1) (x— 1)
Un ‘-*7‘M“’¥"K“[l“m]’ pl._—w——-....i_...—}-—..
x—~1ak ’




It is elear from the equations and boundary condifions
obtained that the only psrsmeters of the probvlsm sre the mugnitadss
ef ¥ &ndé x . Thersfore, it is obvious that for pressuve, Ceusity,
,mrﬂ the componenta of the v=2loeity of geoe at ent point of the flow,
cLe mey write ‘

'_,__p ’. p

e AL AR TN NP N Y SR

B | P v (2.6)
TR AKSEND. = shKnbn

A, Tt s esgy to show that i such an approximats statement
the problem on the steady motion of o thin body at a high supersonie
velocity coincides with the problem on unsteady moticn in space the
number of dimensions of which ls smaller by one,t

By the substitution of the variables in the equations (1 m)

-bE T ' : . '
=y =g y=% z=8 @.1)

we will obtalo souations of the non-steady-stete, two-dimensional

B

problem in fixed plane perpendicular to the velocity of the body

motion (Figure 3):

: a , o v  1dp
| - shock wave ?a'fi + ZJ-;" T waz - p Oy
aw — 1 ép '
6: o By 7 T X ©.2)
)
+J3(PZ) aé&”l ::0
+ 59’ P ’*‘ W 52 T =
du
-dt

nwgu;e 3.
Cendition (1.15) goes 1nto the equation of the motion of the
- boundary which may be regarded as sn unususl piston. Indeed, since

ag dg b [ ag €5 d¢g agﬁ

=2 s : b oy
6‘& atV ' a_n ay s 32: CBeud)

1) The feasibility of feducing the problem on the three-dimensional
ateady rmotion (in this approximste statement) to_the two-dimensienal
rroblem on unsteady motion is pointed by Hsyss L-J _f




we will obtain from (1,15}
g ég . - ‘
Cdnditions at infinity (1.16) go‘iﬁto'initial conditions:

v =0, w=0 uyn t=20 (3.4
_ The change in & under the condition thet X remsin constant
is simuly a change in the seale in the non-steedy-state problem,

18, the problem on the motion of a thin body &t high super-
sonic velocity i» thres-dimensional spaee correspeonds in the approxis
mete statemsnt to the plane non-steady-stste problem of $he expansion
of & cylindrical pliston. ,

The plane problem on the motion of a thin body at a high supers
sonic velocity corresponds o one~@imensional problem on the unsteady
motion of & piston in the presence of the shosk wave. -

4. In order to determine the limits of the applicability of
the similarity criteris obhtained, let us compsre the spproximate solu~
tion with the aveilable exsct solutions. '

4As the Tirst example, let us consider
the problem on the motion of & wedge having

angle 26 in the dirsction of axis x -at
supersoaic velocity (Fisure L),

4s is known, & straight-line shock
wave formg in the flow, this shock wave
oeriginating at the point of the wedge and

forming angle ' with exis Ha

'Figuré &

Tt can be derivad from the eonditions on the shoek wave (2.2)
that

| Iltx — 1) Mg2sin® 8 + 2 tg B
6 = B — arctg o _:Q} Mise

Py = _.;lﬁe..; [Zan‘*’ sin?p — (x — 1}]

(4.1)

whence it is poosible to f;nd the relation p /p sz the function of
the npumbsr M,  and the central angle @ of tne cone, In the eass
being considered . perameter K equals

K =M% =2M, tge . (4.2)

—— -
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A 1 . Graphs of the relation of p/p, .

Py . RSN to  K{x 21} have been constructed
4 : {Figure E) on the bugis of ithe com-
Approximation U putatior performed for numbers M2
g;ﬁgiMuum]; S = 1.5 2e55 10 end variations of
R ' ' engle @& frow O to 200,
§ . The approximate solution of the
' problem on wedge wmotion at high
supersonic velocities amounte to thee
aclution of ops-~dimensionsl problem
on piston wotion a2t a constant speed,
" %he syeed of plston modticn is
ohvicuely equal ta the vertical ve=-
locity of the wedge, 1.2,

- -

p=Vig® -'_M&
fl and consaquently, »
¢ K = -;— tgGWZ-—- (4.4)

Figure §

$ is known, ip piston motlon the pressure and veloclty on
the ﬂbutﬂn eyug. the prescure «nd veloelty beyornd the shock wave,
Eliminating the wegnitude a /e fros the seeond and third
eguations of (2.2) and muking use of (&.Q), wa will obteain

- 2O (n+n (____ xw]/u- (x—{-!)‘ _g“)i" (4.5)

p

The eurvs ﬁorresponéing to {4.5) is regresented ip Figurs 5§
by the broken line. ' :

It is evident frow Flgure 5 that for lorgs wumbers for ¥,
snd suell Pnﬁra* sngles of the wedgo the aprroximets solution
anincides v well with the exset qclﬂtﬁen.

For comparison there sre plotted in Figure 6 hvokequlxne
gurves vhich eorrespond to ths sprproximate computation of ] /p by
Lonov's furmnla‘i i ] 4if one confimnes oneself in it to tha Erms

of the second order relative to @, Donovts foramula has the form
) XMy 1— M2+ Yotk + DME 4y (4.6
Ps + zl/'m —1 x e T 4{Mp -1 (4.6)




vhere K = 2M @is taken approximately .

7 — _— R
& . ] J ) e 3
be 7 :

© = = = Approximation
method -

Exzact solution «

-~

Figure 6. ‘ : o Figure 7.

A8 the second example, let us consider the motion of & right eircu-
lar cone in the direction of its axis at a supersonie veloeity.

- _The exact solution of this problem was given by Busemann
L5 _7 and_the detailed computations were performed by Taylor and
Mac Coll / 6 7. ' : '

we showed above that this problem corresponds spproximately
to the problem on the expansion of a cireular eylindrical pisten
at & stsedy wveloeity. 4nd the solution of the problem on the expan-
sion of a cylindrical piston was given L. I. Sedov / 7 7.

*  In Figure 7 are given the curves of the relation between the
ratio of the pressure pg on the cone {eylindrical piston) to pres-
sure p, im gas at rest, and the number for K = (V/a)21g8 =2v/a,
{because, as in the case of the wedge, &/bz2tz @, and the veloeily
of piston moticn is the vertical cone velocity equalling Vig ©).

The broken line represents the result of numericsl integration of
equations derived in Sedov's work. Continuous lines show the depend-

ence of pg/p, on K with different pumbers for V/ao, this rela-

‘tion having been computed on the vasis of the exact solution by
Taylor apd Mac C_oll. Dot-and-dash lines show the dependence of




P/P, on K with different numbers for V /e , this relation

having been obteined by Busemann's formula / & _?}

It is evident frowm Figure 7 that the difference in the values
produced by the exact end approximate sclutions decreases with the
icersase in the number for F'.k,For M, 23 the result obtained from

tbe aprroximuts solution may be considersd sstisfactory when X <1

(an error of less than 5%), i.e. for the central angles of the cone
.2 8 < 18°, For M,=5. the result is satisfeetory up to K=2, i.e.
for conas with central aungles 26§<: 229, Geuersally, hovever, pres-

sures computed by approximation method are grazster in magnitude than
pressures computed by the exset method. Conversely, pressures comput-
ed by linearized mathod are gmaller in wmesgnitide than pressures com-
puted by the exaet method, the error increasing with the increase in
the nnvbﬁr for M. v

5. As has been shown, with the assuxptions made sbove concern-

ing the form of the bodies and the flow velocity, sll dimensionless
dynemic elemenis of motion depend only on the dimensionless parsmeter
K. Meking use of thie, let us find now the fumcticneal relationship
for the coefficients of head-on drag ¢, and lift foree Cyo

¥ing of Infinite Spen. Let us define the equstion of eontour
in the form

y =4 () = 3 () | o)

where E{ ') ie the distribution functiom of the wipg thickmesses.
Then, making use of (2.6), we will obiein for the aggregata drag ang
1i£% foLce ,

x={pZ d;zsgpﬁf<a-d&'xapg Ky (6.2)

Y=\ piz = "’Peag””& bp®: (K) (53

P |

Expressions for the coefficients of drag axﬁ 1if4y force have
the form _

X % Ou(R) - |
"“(%)pom“zb TV 3 K@%(M« -—fiﬁm (5.4

_ o P @:(ﬁ) Fy (K)
(*/smﬁs =2y = ig,! - (5.5)

ey:":
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For bodies similar in the sense indicated, Akkeret's linear-

ized theory gives the cosfflicients of ¢, ‘end ¢y in the fomm
@ o Gl | T e
Land ’::.-'..."'"—‘--—. % c e e $,

_ For lerge values of the nmber for M these expressions
gssume the form . :

o mp K ~B K a3y
Oy R Mo ) "‘" -ﬁ’g‘ Iy Cy,-..- MG Mgl (5 )

whick agrees with the equations (5.4) end (5.5) although these eque-
tions sre considerably more general. '

Axially Symmetricel Bmy. Iﬁt the eguation of the body be dew
fined in the form

zwﬁgwg) o (5.8)

where i3 the maxdmum diamoter of the cross seeticn; h{E) — the
distribution fumetion of thicknesses, Then, we will obtein for the
Ctotal dreg

X= S p2urdr = 2nétp, & -ﬁ; h(E) k' (E) dE == 2¢§’P§@s (K} (3.9

The coafficmnt of drag related to the area of the maximum
erose section s

2rb2p B, (K) Fa (X) .
= E O = ey (5.10)

 The similerity laws obtained, show that for bodics with the
same Gistribution of thicknesses at the angles of attack proportional

to the relation 8&8/b, amounts ¢ M 3 and cyM,G? (wing of infinite
apan), e Mo 2 (axially synmetrical body) will be funetions of ore

peramster KM, & /b ,
Consequent ly, havzng exparzmental results of blc:wing or of

-1 -
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flight tests for some profile with different numbers for M * it is

‘possible to recompute the obtained results for a series of prd? iles

with the same distribution of thicknesses. Conversely, after blowing
upon & series of profiles, similar in the sense indicated, with the
semé number for M, . it is possible Yo reccmpute the results for each
of the profiles of the series with diffevent numbers for M.

- Formulag derived in the present article for the magnitudes of

c, and e, after taking into account the presence of shock waves
and vortezes in the flow, ceincide with Teien's results obteined

with the sssumption of potentielity anéd isentropy of the flow.
Submitted 26 sugust 1959
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